首页    期刊浏览 2025年04月13日 星期日
登录注册

文章基本信息

  • 标题:3-D Regional Ionosphere Imaging and SED Reconstruction With a New TEC-Based Ionospheric Data Assimilation System (TIDAS)
  • 本地全文:下载
  • 作者:Ercha Aa ; Shun-Rong Zhang ; Philip J.Erickson
  • 期刊名称:Space Weather
  • 印刷版ISSN:1542-7390
  • 出版年度:2022
  • 卷号:20
  • 期号:4
  • 页码:1-23
  • DOI:10.1029/2022SW003055
  • 语种:English
  • 出版社:American Geophysical Union
  • 摘要:A new TEC-based ionospheric data assimilation system (TIDAS) over the continental US and adjacent area (20°–60°N, 60°–130°W, and 100–600 km) has been developed through assimilating heterogeneous ionospheric data, including dense ground-based Global Navigation Satellite System (GNSS) Total Electron Content (TEC) from 2,000+ receivers, Constellation Observing System for Meteorology, Ionosphere, and Climate radio occultation data, JASON satellite altimeter TEC, and Millstone Hill incoherent scatter radar measurements. A hybrid Ensemble-Variational scheme is utilized to reconstruct the regional 3-D electron density distribution: a more realistic and location-dependent background error covariance matrix is calculated from an ensemble of corrected NeQuick outputs, and a three-dimensional variational (3DVAR) method is adopted for measurement updates to obtain an optimal state estimation. The spatial-temporal resolution of the reanalyzed 3-D electron density product is as high as 1° × 1° in latitude and longitude, 20 km in altitude, and 5 min in universal time, which is sufficient to reproduce ionospheric fine structure and storm-time disturbances. The accuracy and reliability of data assimilation results are validated using ionosonde and other measurements. TIDAS reanalyzed electron density is able to successfully reconstruct the 3-D morphology and dynamic evolution of the storm-enhanced density (SED) plume observed during the St. Patrick's day geomagnetic storm on 17 March 2013 with high fidelity. Using TIDAS, we found that the 3-D SED plume manifests as a ridge-like high-density channel that predominantly occurred between 300 and 500 km during 19:00–21:00 UT for this event, with the F2 region peak height being raised by 40–60 km and peak density enhancement of 30%–50%.
国家哲学社会科学文献中心版权所有