首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Carbon-based material-supported single-atom catalysts for energy conversion
  • 本地全文:下载
  • 作者:Huimin Zhang ; Wenhao Liu ; Dong Cao
  • 期刊名称:iScience
  • 印刷版ISSN:2589-0042
  • 出版年度:2022
  • 卷号:25
  • 期号:6
  • 页码:1-36
  • DOI:10.1016/j.isci.2022.104367
  • 语种:English
  • 出版社:Elsevier
  • 摘要:SummaryIn recent years, single-atom catalysts (SACs) with unique electronic structure and coordination environment have attracted much attention due to its maximum atomic efficiency in the catalysis fields. However, it is still a great challenge to rationally regulate the coordination environments of SACs and improve the loading of metal atoms for SACs during catalysis progress. Generally, carbon-based materials with excellent electrical conductivity and large specific surface area are widely used as catalyst supports to stabilize metal atoms. Meanwhile, carbon-based material-supported SACs have also been extensively studied and applied in various energy conversion reactions, such as hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2RR), and nitrogen reduction reaction (NRR). Herein, rational synthesis methods and advanced characterization techniques were introduced and summarized in this review. Then, the theoretical design strategies and construction methods for carbon-based material-supported SACs in electrocatalysis applications were fully discussed, which are of great significance for guiding the coordination regulation and improving the loading of SACs. In the end, the challenges and future perspectives of SACs were proposed, which could largely contribute to the development of single atom catalysts at the turning point.Graphical abstractDisplay OmittedElectrochemical energy conversion; Materials science; Materials chemistry; Energy materials
国家哲学社会科学文献中心版权所有