首页    期刊浏览 2025年02月27日 星期四
登录注册

文章基本信息

  • 标题:A comparison between nonlinear and constant thermal properties approaches to estimate the temperature in LASER welding simulation
  • 本地全文:下载
  • 作者:Arthur Mendonça de Azevedo ; Elisan dos Santos Magalhães ; Rodrigo Gustavo Dourado da Silva
  • 期刊名称:Case Studies in Thermal Engineering
  • 印刷版ISSN:2214-157X
  • 电子版ISSN:2214-157X
  • 出版年度:2022
  • 卷号:35
  • 页码:102135
  • 语种:English
  • 出版社:Elsevier B.V.
  • 摘要:The nonlinear thermophysical properties significantly affect the temperature field and the appearance of the weld bead in the LASER Beam Welding (LBW). Then, it is vital to have a well-defined numerical model for analyzing the thermal behavior of the welded material. Nonetheless, many papers still address the welding simulation using constant thermal properties. In this way, this paper proposes a three-dimensional thermal analysis of an unsteady LBW aiming to compare the difference between the constant and nonlinear thermophysical properties approaches. It applied the Finite Volume Method (FVM) to solve the nonlinear three-dimensional heat diffusion equation with an enthalpy function to model the phase change using a fully implicit scheme. In traditional models, these considerations promote a significant increase in computational time for the convergence of the method. Thus, CUDA-C in-house parallel routines were implemented and executed in a Graphics Processing Unit (GPU) to solve this problem. Lab-controlled experiments validated the proposed methodology. The results highlighted the importance of using the nonlinear approach. Furthermore, a detailed study demonstrated the difficulty of knowing precisely the placement of thermocouples, given the high-temperature gradient in the welding processes. The proposed methodology demonstrated to be a faster, cheaper, and efficient way to simulate the LBW.
  • 关键词:Thermophysical properties LASER Beam welding Enthalpy method CUDA-C GPU
国家哲学社会科学文献中心版权所有