首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:A Nonparametric Weighted Cognitive Diagnosis Model and Its Application on Remedial Instruction in a Small-Class Situation
  • 本地全文:下载
  • 作者:Cheng-Hsuan Li ; Yi-Jin Ju ; Pei-Jyun Hsieh
  • 期刊名称:Sustainability
  • 印刷版ISSN:2071-1050
  • 出版年度:2022
  • 卷号:14
  • 期号:10
  • 页码:5773
  • DOI:10.3390/su14105773
  • 语种:English
  • 出版社:MDPI, Open Access Journal
  • 摘要:CDMs can provide a discrete classification of mastery skills to diagnose relevant conceptions immediately for Education Sustainable Development. Due to the problem of parametric CDMs with only a few training sample sizes in small classroom teaching situations and the lack of a nonparametric model for classifying error patterns, two nonparametric weighted cognitive diagnosis models, NWSD and NWBD, for classifying mastery skills and knowledge bugs were proposed, respectively. In both, the variances of items with respect to the ideal responses were considered for computing the weighted Hamming distance, and the inverse distances between the observed and ideal responses were used as weights to obtain the probabilities of the mastering attributes of a student. Conversely, NWBD can classify students’ “bugs”, so teachers can provide suitable examples for precision assistance before teaching non-mastery skills. According to the experimental results on simulated and real datasets, the proposed methods outperform some standard methods in a small-class situation. The results also demonstrate that a remedial course with NWSD and NWBD is better than one with traditional group remedial teaching.
国家哲学社会科学文献中心版权所有