摘要:Cultural Ecosystem Services (CES) are undervalued and poorly understood compared to other types of ecosystem services. The sociocultural preferences of the different actors who enjoy a landscape are intangible aspects of a complex evaluation. Landscape photographs available on social media have opened up the possibility of quantifying landscape values and ecosystem services that were previously difficult to measure. Thus, a new research methodology has been developed based on the spatial distribution of geotagged photographs that, based on probabilistic models, allows us to estimate the potential of the landscape to provide CES. This study tests the effectiveness of predictive models from MaxEnt, a software based on a machine learning technique called the maximum entropy approach, as tools for land management and for detecting CES hot spots. From a sample of photographs obtained from the Panoramio network, taken between 2007 and 2008 in the Lozoya Valley in Madrid (Central Spain), we have developed a predictive model of the future and compared it with the photographs available on the social network between 2009 and 2015. The results highlight a low correspondence between the prediction of the supply of CES and its real demand, which indicates that MaxEnt is not a sufficiently useful predictive tool in complex and changing landscapes such as the one studied here.