摘要:Large ships adopt a central fresh water-cooling system that indirectly cools waste heat with seawater to discharge the ship′s waste heat out of the ship. Such a central fresh water-cooling system is essential for future electric powered ships. Since 2010, shipping companies have attempted to save energy by applying variable-speed cooling pumps to the central FW cooling system, but due to the minimum-required discharge pressure of the pump, they have applied the existing 3-way valve system alongside. However, since the control systems of the variable-speed cooling pump and the 3-way valve are controlled by the same output variable, the two control systems collide during operation. Therefore, for efficient energy-saving control, it is important to accurately model the central fresh water-cooling system and find the optimal control method on this basis. In this study, a ship’s central cooling system was mathematically modeled and verified by comparing it with the actual ship′s operation data. A control solution method to effectively save energy for the central cooling system was proposed