首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Research Progress on Global Marine Gas Hydrate Resistivity Logging and Electrical Property Experiments
  • 本地全文:下载
  • 作者:Qiang Chen ; Nengyou Wu ; Changling Liu
  • 期刊名称:Journal of Marine Science and Engineering
  • 电子版ISSN:2077-1312
  • 出版年度:2022
  • 卷号:10
  • 期号:1
  • 页码:645
  • DOI:10.3390/jmse10050645
  • 语种:English
  • 出版社:MDPI AG
  • 摘要:Natural gas hydrate is widely spread in marine environments around the world. It has great energy potential due to its high methane gas content. High-precision exploration and evaluation of marine gas hydrate still face great challenges as it is affected by the complex reservoir control mechanisms and distribution characteristics. Resistivity is widely used in geophysical logging and theoretical research on gas hydrate-bearing reservoirs by utilizing the high sensitivity electrical response. In this paper, based on the examination of the global marine gas hydrate occurrences, resistivity logging results are summarized. Then the key remaining gas hydrate resistivity experimental concerns are reviewed. In summary, resistivity properties are a reliable means to derive the gas hydrate reservoir characteristics, despite the effect induced by the anisotropic properties of hydrate reservoirs and drilling technology. The overall resistivity change associated with the occurrence of pore filling gas hydrate in reservoirs are relatively small, and the specific value is affected by sediment lithology and hydrate saturation. On the other hand, fracture filling hydrate reservoirs have strong anisotropy, and massive hydrate occurrences (i.e., layers of gas hydrate with no sediment) section shows very high resistivity variation. Clay minerals are an important factor restricting the accurate estimation of gas hydrate saturations from in situ resistivity measurements. Many experimental studies have proposed the correction of Archie empirical formula, but widely representative models have not yet been developed. It is worth noting that more complex resistivity measurements may be able to provide additional electrical response information on various gas hydrate systems.
国家哲学社会科学文献中心版权所有