首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Forecasting Shanghai Container Freight Index: A Deep-Learning-Based Model Experiment
  • 本地全文:下载
  • 作者:Enna Hirata ; Takuma Matsuda
  • 期刊名称:Journal of Marine Science and Engineering
  • 电子版ISSN:2077-1312
  • 出版年度:2022
  • 卷号:10
  • 期号:1
  • 页码:593
  • DOI:10.3390/jmse10050593
  • 语种:English
  • 出版社:MDPI AG
  • 摘要:With the increasing availability of large datasets and improvements in prediction algorithms, machine-learning-based techniques, particularly deep learning algorithms, are becoming increasingly popular. However, deep-learning algorithms have not been widely applied to predict container freight rates. In this paper, we compare a long short-term memory (LSTM) method and a seasonal autoregressive integrated moving average (SARIMA) method for forecasting the comprehensive and route-based Shanghai Containerized Freight Index (SCFI). The research findings indicate that the LSTM deep learning models outperformed SARIMA models in most of the datasets. For South America and the east coast of the U.S. routes, LSTM could reduce forecasting errors by as much as 85% compared to SARIMA. The SARIMA models performed better than LSTM in predicting freight movements on the west and east Japan routes. The study contributes to the literature in four ways. First, it presents insights for improving forecasting accuracy. Second, it helps relevant parties understand the trends of container freight markets for wiser decision-making. Third, it helps relevant stakeholders understand overall container shipping market trends. Lastly, it can help hedge against the volatility of freight rates.
国家哲学社会科学文献中心版权所有