期刊名称:International Journal of Population Data Science
电子版ISSN:2399-4908
出版年度:2022
卷号:7
期号:1
DOI:10.23889/ijpds.v7i1.1700
语种:English
出版社:Swansea University
摘要:Background The shifting landscape of abortion care from a hospital-only to a distributed service including primary care has implications for how to identify abortion cohorts for research and surveillance. The objectives of this study were to 1) create an improved approach to define abortion cohorts using linked administrative data sets and 2) evaluate the performance of this approach for abortion surveillance compared with standard approaches. Methods We applied four principles to identify induced abortion cohorts when some services are delivered beyond hospital settings; 1) exclude early pregnancy losses and postpartum procedures; 2) use multiple data sources; 3) define episodes of care; 4) apply a hierarchical algorithm to determine abortion date to a population-based cohort of all abortion events in Ontario (Canada) from January 1, 2018-March 15, 2020. We calculated risk differences (RD, with 95% confidence intervals) comparing the proportion of medication vs. surgical, first vs. second trimester, and complication incidence applying these principles vs. standard approaches. Results Hospital-only data (versus multiple data sources) underestimated the frequency of medication abortion (16.1% vs. 31.4%; RD -15.3% [-14.3, -16.3]) and first-trimester abortion (82.1% vs. 94.5%; RD -12.8 [-11.4, 13.4]) and overestimated incidence of abortion complication (2.9% vs. 0.69%; RD 2.2% [1.8, 2.7]). An unlinked (versus linked) approach underestimated the frequency of abortion complications (0.19% vs 0.69%, -RD 0.50% [-0.44 - -0.56]). Including (versus excluding) abortions following early pregnancy loss or delivery events increased the estimated incidence of abortion complications (1.29% vs. 0.69%, RD 0.60% [0.51-0.69]. Conclusion New methods are required to accurately identify abortion cohorts for surveillance or research. When legal or regulatory approaches to medication abortion evolve to enable abortion in primary care or office-based settings, hospital-based surveillance systems will become incomplete and biased; to continue valid and complete abortion surveillance, methods must be adjusted to ensure complete capture of procedures across all settings.