首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:A strawman with machine learning for a brain: A response to Biedermann (2022) the strange persistence of (source) “identification” claims in forensic literature
  • 本地全文:下载
  • 作者:Geoffrey Stewart Morrison ; Daniel Ramos ; Rolf JF Ypma
  • 期刊名称:Forensic Science International: Synergy
  • 印刷版ISSN:2589-871X
  • 出版年度:2022
  • 卷号:4
  • 页码:100230
  • 语种:English
  • 出版社:Elsevier BV
  • 摘要:We agree wholeheartedly with Biedermann (2022) FSI Synergy article 100222 in its criticism of research publications that treat forensic inference in source attribution as an “identification” or “individualization” task. We disagree, however, with its criticism of the use of machine learning for forensic inference. The argument it makes is a strawman argument. There is a growing body of literature on the calculation of well-calibrated likelihood ratios using machine-learning methods and relevant data, and on the validation under casework conditions of such machine-learning-based systems.
国家哲学社会科学文献中心版权所有