首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:NORMAL CLASSIFICATION OF 3D OCCUPANCY GRIDS FOR VOXEL-BASED INDOOR RECONSTRUCTION FROM POINT CLOUDS
  • 本地全文:下载
  • 作者:P. Hübner ; S. Wursthorn ; M. Weinmann
  • 期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
  • 印刷版ISSN:2194-9042
  • 电子版ISSN:2194-9050
  • 出版年度:2022
  • 卷号:V-4-2022
  • 页码:121-128
  • DOI:10.5194/isprs-annals-V-4-2022-121-2022
  • 语种:English
  • 出版社:Copernicus Publications
  • 摘要:In this paper, we present an automated method for classification of binary voxel occupancy grids of discretized indoor mapping data such as point clouds or triangle meshes according to normal vector directions. Filled voxels get assigned normal class labels distinguishing between horizontal and vertical building structures. The horizontal building structures are further differentiated into those with normal directions pointing upwards or downwards with respect to the building interior. The derived normal grids can be deployed in the context of an existing voxel-based indoor reconstruction pipeline, which so far was only applicable to indoor mapping triangle meshes that already contain normal vectors consistently oriented with respect to the building interior. By means of quantitative evaluation against reference data, we demonstrate the performance of the proposed method and its applicability in the context of voxel-based indoor reconstruction from indoor mapping point clouds without normal vectors. The code of our implementation is made available to the public at https://github.com/huepat/voxir.
  • 关键词:Indoor Reconstruction; Voxel; Building Model; Normal Vector; Point Cloud; Triangle Mesh
国家哲学社会科学文献中心版权所有