期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
印刷版ISSN:2194-9042
电子版ISSN:2194-9050
出版年度:2022
卷号:V-4-2022
页码:83-90
DOI:10.5194/isprs-annals-V-4-2022-83-2022
语种:English
出版社:Copernicus Publications
摘要:Urban Functional Zone (UFZ) identification facilitates the understanding of urban systems, which are complex and huge, and helps promote sustainable urban development. Existing studies on UFZ identification with Points of Interests (POIs) have focused much on more accurately extracting functional semantics, but ignored the fine delineation of UFZs in the spatial domain. The fine delineation of the spatial units of UFZs is also a key issue in UFZ identification. Since the sizes of UFZs can be different in practice, it is difficult to delineate spatially heterogeneous UFZs on a fixed scale. To solve the issue, a novel multi-scale spatial segmentation method was proposed in this study. Through taking the homogeneous socio-economic attributes of UFZs into account, we firstly generated a number of multi-scale spatial units by computing the mixed degree of POIs types, which reflects the mixed functions of each UFZs, using information entropy. Subsequently, we constructed the urban functional corpus of each spatial unit by measuring the spatial distribution pattern of POIs. The Word2Vec model was employed to obtain the semantic embedding vectors of UFZs, following which we adopted cosine distance-based K-means clustering method to group similar UFZs into one cluster. Finally, the enrichment factor was used to help annotate each functional cluster with a specific label. The UFZ identification results were compared with the Baidu e-maps and Baidu street view images for evaluation, and an accuracy of 82.7% was obtained. This study considering the heterogeneous distribution of POIs supports the fine-grained identification of UFZs, providing reference for urban planning.
关键词:Urban Functional Zones; Multi-scale Segmentation; Points of Interests; Natural Language Processing; Word2Vec