首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:RAILWAY LIDAR SEMANTIC SEGMENTATION WITH AXIALLY SYMMETRICAL CONVOLUTIONAL LEARNING
  • 本地全文:下载
  • 作者:A. Manier ; J. Moras ; J.-C. Michelin
  • 期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
  • 印刷版ISSN:2194-9042
  • 电子版ISSN:2194-9050
  • 出版年度:2022
  • 卷号:V-2-2022
  • 页码:135-142
  • DOI:10.5194/isprs-annals-V-2-2022-135-2022
  • 语种:English
  • 出版社:Copernicus Publications
  • 摘要:This paper presents a new deep-learning-based method for 3D Point Cloud Semantic Segmentation specifically designed for processing real-world LIDAR railway scenes. The new approach relies on the use of spatial local point cloud transformations for convolutional learning. These transformations allow an increased robustness to varying point cloud densities while preserving metric information and a sufficient descriptive ability. The resulting performances are illustrated with results on railway data from two distinct LIDAR point cloud datasets acquired in industrial settings. The quality of the extraction of useful information for maintenance operations and topological analysis is pointed together with a noticeable robustness to point cloud variations in distribution and point redundancy.
  • 关键词:Semantic segmentation; 3D point cloud; Deep-learning; Railway; LIDAR
国家哲学社会科学文献中心版权所有