期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
印刷版ISSN:2194-9042
电子版ISSN:2194-9050
出版年度:2022
卷号:V-2-2022
页码:135-142
DOI:10.5194/isprs-annals-V-2-2022-135-2022
语种:English
出版社:Copernicus Publications
摘要:This paper presents a new deep-learning-based method for 3D Point Cloud Semantic Segmentation specifically designed for processing real-world LIDAR railway scenes. The new approach relies on the use of spatial local point cloud transformations for convolutional learning. These transformations allow an increased robustness to varying point cloud densities while preserving metric information and a sufficient descriptive ability. The resulting performances are illustrated with results on railway data from two distinct LIDAR point cloud datasets acquired in industrial settings. The quality of the extraction of useful information for maintenance operations and topological analysis is pointed together with a noticeable robustness to point cloud variations in distribution and point redundancy.
关键词:Semantic segmentation; 3D point cloud; Deep-learning; Railway; LIDAR