摘要:Coal is an important resource for China and even for the whole world. With the improvement of mechanization, automation and intelligence of coal mining equipment in China, there has been an imbalance between the speed of mining and of excavating. Adopting efficient cutting paths is beneficial to improving roadway excavation efficiency and alleviating the imbalance between mining and excavation. In this paper, taking the 12307 belt roadway of Wangjialing Coal Mine as the research background, the geomechanical parameters and distribution characteristics of the surrounding rock were observed and studied, and the test results of in-situ stress, surrounding rock structure and surrounding rock strength were obtained. Based on the test results, a numerical model was established, and the stress and displacement distribution law of the surrounding rock of the roadway under different cutting paths were analyzed, and two optimal cutting paths were proposed based on the actual situation, and industrial tests were carried out. The test results show that using the “snake” cutting path from bottom to top, the roadway section forming effect is good, and a single cycle excavation takes 34 min, which verified the effectiveness of the cutting path design. On the basis of specific engineering geological conditions, excavation equipment and technology, combined with experimental testing, numerical simulation and other methods, the roadway excavation cutting path can be optimized, and the research results can provide a reference for the design of cutting paths for coal mine excavation roadways with the same geological conditions.