摘要:Climate change and human interventions (e.g., massive barrages, dams, sand mining, and sluice gates) in the Ganga–Padma River (India and Bangladesh) have escalated in recent decades, disrupting the natural flow regime and habitat. This study employed innovative trend analysis (ITA), range of variability approach (RVA), and continuous wavelet analysis (CWA) to quantify the past to future hydrological change in the river because of the building of the Farakka Barrage (FB). We also forecast flow regimes using unique hybrid machine learning techniques based on particle swarm optimization (PSO). The ITA findings revealed that the average discharge trended substantially negatively throughout the dry season (January–May). However, the RVA analysis showed that average discharge was lower than environmental flows. The CWA indicated that the FB has a significant influence on the periodicity of the streamflow regime. PSO-Reduced Error Pruning Tree (REPTree) was the best fit for average discharge prediction (RMSE = 0.14), PSO-random forest (RF) was the best match for maximum discharge (RMSE = 0.3), and PSO-M5P (RMSE = 0.18) was better for the lowest discharge prediction. Furthermore, the basin’s discharge has reduced over time, concerning the riparian environment. This research describes the measurement of hydrological change and forecasts the discharge for upcoming days, which might be valuable in developing sustainable water resource management plans in this location.