首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Research on prediction methods of formation pore pressure based on machine learning
  • 本地全文:下载
  • 作者:Honglin Huang ; Jun Li ; Hongwei Yang
  • 期刊名称:Energy Science & Engineering
  • 电子版ISSN:2050-0505
  • 出版年度:2022
  • 卷号:10
  • 期号:6
  • 页码:1886-1901
  • DOI:10.1002/ese3.1112
  • 语种:English
  • 出版社:John Wiley & Sons, Ltd.
  • 摘要:Abstract Formation pressure is the most fundamental data in oil and gas drilling and production; it has an important position in the entire cycle of oil and gas extraction. However, most current prediction methods are limited to parametric methods with fixed models; such that the accuracy does not meet requirements. This is especially true for deeper layers of marine sedimentary basins where the safety density window is extremely narrow. In this study, we propose a novel method to predict pore pressure using machine learning techniques. For the first time, the effective stress (direct output variable) was accurately predicted by a combination of four input variables (2900 sets of data, of which 90% is the training subset and 10% is the testing subset), including longitudinal velocity, porosity, mud content, and density. As such, an accurate prediction of the formation pressure was achieved based on the effective stress theorem. The performance of machine learning techniques was verified by comparing and analyzing the prediction results with traditional parametric single and multivariate models; whereby the best algorithm was chosen by structural optimization and comparative analysis of five algorithms (multilayer perceptron neural network, radial basis neural network, support vector machine, random forest, and gradient boosting machine). Compared with the methods based on parametric one‐dimensional and multivariate models, the machine learning‐based method was determined to possess high accuracy, adequate self‐adaptation, and high fault tolerance (D2 = 0.9981, RMSE = 0.00718 g/cm3). Moreover, the multilayer perceptual neural network algorithm outperformed other machine learning algorithms in terms of goodness of fit, generalization, and prediction accuracy, with D2 = 0.9981 and RMSE = 0.00709 g/cm3. The formation pressure prediction model developed in this study is not affected by the mechanical depositional environment and is applicable to sandy mudstone formations, such that it can be a useful and highly accurate alternative to the traditional formation pressure prediction methods with fixed parameter forms.
国家哲学社会科学文献中心版权所有