首页    期刊浏览 2024年09月19日 星期四
登录注册

文章基本信息

  • 标题:Thermodynamic analysis for bioconvection peristaltic transport of nanofluid with gyrotactic motile microorganisms and Arrhenius activation energy
  • 本地全文:下载
  • 作者:Y. Akbar ; H. Alotaibi ; J. Iqbal
  • 期刊名称:Case Studies in Thermal Engineering
  • 印刷版ISSN:2214-157X
  • 电子版ISSN:2214-157X
  • 出版年度:2022
  • 卷号:34
  • 页码:102055
  • 语种:English
  • 出版社:Elsevier B.V.
  • 摘要:Improving high-efficiency thermal systems to increase heat transmission has become quite prevalent nowadays. Various works were conducted to gain insight into the implementation of heat transfer for their practical use in increasing heat transfer. Therefore, the present study focuses on analyzing heat exchange and irreversibility rate (entropy generation) for bioconvection peristaltic transport of nanofluid with mass transfer. Investigation takes place inside an asymmetrical channel with flow subject to the action of gyrotactic motile microorganisms and Arrhenius activation energy. The considered flow situation is sculpted via Brownian diffusion, variable viscosity, nonuniform heat generation/absorption, viscous dissipation, porous medium, mixed convection, and thermophoresis diffusion assumptions. Lubrication approximations have been used in this modelling. Numerical computations of the governing equations along with related conditions are conducted using NDSolve in Mathematica. Quantities of physical interest such as temperature distribution, entropy production, concentration, density of motile microorganism and velocity profiles are computed and depicted through tables and graphs to demonstrate the effects of the related parameters. The results revealed that temperature distribution suppresses for higher activation parameters. Heat transfer rate at wall decreases for higher viscosity parameter. To minimize the generation of entropy in the system, we need to increase the porosity parameter. It is also found that the density of motile microorganism decreases for higher bioconvection Peclet number. Moreover, fluid motion strongly advanced by enhancing the Bioconvection Rayleigh number and buoyancy ratio parameter. Water-based nanofluid provides better heat and irreversibility properties as compared to methanol based nanofluid.
  • 关键词:Arrhenius activation energy Bioconvection Variable properties Heat transfer Entropy production
国家哲学社会科学文献中心版权所有