首页    期刊浏览 2024年11月07日 星期四
登录注册

文章基本信息

  • 标题:Predicted Sea‐Level Rise‐Driven Biogeomorphological Changes on Fire Island, New York: Implications for People and Plovers
  • 本地全文:下载
  • 作者:S. L. Zeigler ; B. T. Gutierrez ; E. E. Lentz
  • 期刊名称:Earth's Future
  • 电子版ISSN:2328-4277
  • 出版年度:2022
  • 卷号:10
  • 期号:4
  • 页码:n/a-n/a
  • DOI:10.1029/2021EF002436
  • 语种:English
  • 出版社:John Wiley & Sons, Ltd.
  • 摘要:Abstract Forecasting biogeomorphological conditions for barrier islands is critical for informing sea‐level rise (SLR) planning, including management of coastal development and ecosystems. We combined five probabilistic models to predict SLR‐driven changes and their implications on Fire Island, New York, by 2050. We predicted barrier island biogeomorphological conditions, dynamic landcover response, piping plover (Charadrius melodus) habitat availability, and probability of storm overwash under three scenarios of shoreline change (SLC) and compared results to observed 2014/2015 conditions. Scenarios assumed increasing rates of mean SLC from 0 to 4.71 m erosion per year. We observed uncertainty in several morphological predictions (e.g., beach width, dune height), suggesting decreasing confidence that Fire Island will evolve in response to SLR as it has in the past. Where most likely conditions could be determined, models predicted that Fire Island would become flatter, narrower, and more overwash‐prone with increasing rates of SLC. Beach ecosystems were predicted to respond dynamically to SLR and migrate with the shoreline, while marshes lost the most area of any landcover type compared to 2014/2015 conditions. Such morphological changes may lead to increased flooding or breaching with coastal storms. However—although modest declines in piping plover habitat were observed with SLC—the dynamic response of beaches, flatter topography, and increased likelihood of overwash suggest storms could promote suitable conditions for nesting piping plovers above what our geomorphology models predict. Therefore, Fire Island may offer a conservation opportunity for coastal species that rely on early successional beach environments if natural overwash processes are encouraged.
国家哲学社会科学文献中心版权所有