摘要:Introduction: Malaria is a life-threatening acute febrile illness which is affecting the lives of millions globally. Its distribution is characterized by spatial, temporal, and spatiotemporal heterogeneity. Detection of the space-time distribution and mapping high-risk areas is useful to target hot spots for effective intervention. Methods: Time series cross sectional study was conducted using weekly malaria surveillance data obtained from Amhara Public Health Institute. Poisson model was fitted to determine the purely spatial, temporal, and space-time clusters using SaTScan™ 9.6 software. Spearman correlation, bivariate, and multivariable negative binomial regressions were used to analyze the relation of the climatic factors to count of malaria incidence. Result: Jabitenan, Quarit, Sekela, Bure, and Wonberma were high rate spatial cluster of malaria incidence hierarchically. Spatiotemporal clusters were detected. A temporal scan statistic identified 1 risk period from 1 July 2013 to 30 June 2015. The adjusted incidence rate ratio showed that monthly average temperature and monthly average rainfall were independent predictors for malaria incidence at all lag-months. Monthly average relative humidity was significant at 2 months lag. Conclusion: Malaria incidence had spatial, temporal, spatiotemporal variability in West Gojjam zone. Mean monthly temperature and rainfall were directly and negatively associated to count of malaria incidence respectively. Considering these space-time variations and risk factors (temperature and rainfall) would be useful for the prevention and control and ultimately achieve elimination.