摘要:To settle the issue of balance between two objectives, i.e., photovoltaic (PV) power station output power maximization and frequency regulation (FR) signals response, a novel PV reconfiguration strategy is proposed in this work, which maximizes the output power through PV reconfiguration, and meanwhile utilizes the energy storage system (ESS) to decrease the PV plant generated power’ deviation from FR signals. Above all, a model of PV-storage power station reconfiguration is designed to minimize the power bias of both rated power and FR signals. Then, the multi-objective Harris hawks optimization (MHHO) is used to obtain the Pareto front which can optimize the above two objectives due to its high optimization efficiency and speed. Subsequently, the optimal compromise solution is selected by the decision-making method of VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR). Aiming to substantiate the efficacy of the proposed technique, the case studies are carried out under partial shading condition (PSC) with constant and time-varying FR signals. The simulation results show that, compared with the situation without optimization, the power deviations of the two objectives are reduced by 25.11 and 75.76% under constant FR signals and 23.27 and 55.81% under time-varying FR signals by proposed method, respectively.