首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Case Study: Development of the CNN Model Considering Teleconnection for Spatial Downscaling of Precipitation in a Climate Change Scenario
  • 本地全文:下载
  • 作者:Jongsung Kim ; Myungjin Lee ; Heechan Han
  • 期刊名称:Sustainability
  • 印刷版ISSN:2071-1050
  • 出版年度:2022
  • 卷号:14
  • 期号:8
  • 页码:4719
  • DOI:10.3390/su14084719
  • 语种:English
  • 出版社:MDPI, Open Access Journal
  • 摘要:Global climate models (GCMs) are used to analyze future climate change. However, the observed data of a specified region may differ significantly from the model since the GCM data are simulated on a global scale. To solve this problem, previous studies have used downscaling methods such as quantile mapping (QM) to correct bias in GCM precipitation. However, this method cannot be considered when certain variables affect the observation data. Therefore, the aim of this study is to propose a novel method that uses a convolution neural network (CNN) considering teleconnection. This new method considers how the global climate phenomena affect the precipitation data of a target area. In addition, various meteorological variables related to precipitation were used as explanatory variables for the CNN model. In this study, QM and the CNN models were applied to calibrate the spatial bias of GCM data for three precipitation stations in Korea (Incheon, Seoul, and Suwon), and the results were compared. According to the results, the QM method effectively corrected the range of precipitation, but the pattern of precipitation was the same at the three stations. Meanwhile, for the CNN model, the range and pattern of precipitation were corrected better than the QM method. The quantitative evaluation selected the optimal downscaling model, and the CNN model had the best performance (correlation coefficient (CC): 69% on average, root mean squared error (RMSE): 117 mm on average). Therefore, the new method suggested in this study is expected to have high utility in forecasting climate change. Finally, as a result of forecasting for future precipitation in 2100 via the CNN model, the average annual rainfall increased by 17% on average compared to the reference data.
国家哲学社会科学文献中心版权所有