首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:An Adaptive Embedding Network with Spatial Constraints for the Use of Few-Shot Learning in Endangered-Animal Detection
  • 本地全文:下载
  • 作者:Jiangfan Feng ; Juncai Li
  • 期刊名称:ISPRS International Journal of Geo-Information
  • 电子版ISSN:2220-9964
  • 出版年度:2022
  • 卷号:11
  • 期号:4
  • 页码:256
  • DOI:10.3390/ijgi11040256
  • 语种:English
  • 出版社:MDPI AG
  • 摘要:Image recording is now ubiquitous in the fields of endangered-animal conservation and GIS. However, endangered animals are rarely seen, and, thus, only a few samples of images of them are available. In particular, the study of endangered-animal detection has a vital spatial component. We propose an adaptive, few-shot learning approach to endangered-animal detection through data augmentation by applying constraints on the mixture of foreground and background images based on species distributions. First, the pre-trained, salient network U2-Net segments the foregrounds and backgrounds of images of endangered animals. Then, the pre-trained image completion network CR-Fill is used to repair the incomplete environment. Furthermore, our approach identifies a foreground–background mixture of different images to produce multiple new image examples, using the relation network to permit a more realistic mixture of foreground and background images. It does not require further supervision, and it is easy to embed into existing networks, which learn to compensate for the uncertainties and nonstationarities of few-shot learning. Our experimental results are in excellent agreement with theoretical predictions by different evaluation metrics, and they unveil the future potential of video surveillance to address endangered-animal detection in studies of their behavior and conservation.
国家哲学社会科学文献中心版权所有