摘要:Due to high compliance and adaptiveness, soft robots show more advantages than traditional rigid robots in grasping irregularly shaped or fragile objects. Moreover, soft robots attract increasing attention as more and more robots are adopted in unstructured or human–robot interaction environments. However, during the grasping process, most soft robots need constant input stimuli to maintain the grasping configurations, which directly induces low energy efficiency. This article demonstrates the self-stable property of the dual-chamber structure, which can maintain bending deformation without input stimuli based on the differential pressure of the two chambers. Based on the self-stable property, a soft self-stable actuator (SSSA) driven by the tendon is proposed, and it can maintain the bending deformation without energy consumption, which can improve the energy efficiency of the actuator significantly. The self-stability of the actuator during the restoring period is analyzed, and the energy consumption model of the actuator is developed. Finally, the experiments are conducted to verify the validity of the models. The results show the actuator can achieve self-stability without any energy input, and the energy consumption can be reduced by about 45%. Hence, the proposed actuator can be adopted in applications where energy efficiency is sensitive.