首页    期刊浏览 2024年09月15日 星期日
登录注册

文章基本信息

  • 标题:Prospects of Biochar for Sustainable Agriculture and Carbon Sequestration: An Overview for Eastern Himalayas
  • 本地全文:下载
  • 作者:Jayanta Layek ; Rumi Narzari ; Samarendra Hazarika
  • 期刊名称:Sustainability
  • 印刷版ISSN:2071-1050
  • 出版年度:2022
  • 卷号:14
  • 期号:11
  • 页码:6684
  • DOI:10.3390/su14116684
  • 语种:English
  • 出版社:MDPI, Open Access Journal
  • 摘要:The net arable land area is declining worldwide rapidly due to soil erosion, drought, loss of soil organic carbon, and other forms of degradation. Intense rainfall, cultivation along steep slopes, unscientific land-use changes, shifting cultivation, soil acidity, and nutrient mining in hills and mountains make agriculture unsustainable and less profitable. Hills and mountain ecosystems of the Eastern Himalayan Region (EHR) are further prone to the impact of climate change posing a serious threat to agricultural production and the environment. Increasing soil carbon reserves contributes to multiple ecosystem services, improves soil nutrient and water-holding capacities, and advances climate-resilient agriculture. Thus, carbon sequestration is increasingly becoming an important aspect of farming among researchers in the region. The EHR predominantly practices shifting cultivation that degrades the ecosystem and promotes land degradation and biodiversity loss. Leaching of exchangeable bases is highly favored due to excess rainfall which in turn creates an acidic soil accounting for >84% of the region. Application of lime to raise the soil acidity for the cultivation of crops did not get adequate acceptance among the farming community due to multiple issues such as cost involvement, non-availability in time and place, and transportation issues. The application of biochar as soil amendments is widely known to improve soil’s physical, chemical, and biological properties. Biochar has also emerged as a potential candidate for long-term carbon sequestration due to its inbuilt structure and higher stability. Shift from traditional “slash and burn” culture to “slash and char” might lead to the sequestration of carbon from the atmosphere. Around 0.21 Pg of carbon (12% of the total anthropogenic carbon emissions by land-use change) can be sequestered in the soil if the traditional “slash and burnt” practice is converted to “slash and char”. The objective of this review is to provide detailed information about the role of biochar in altering the soil properties for sustaining agriculture and carbon sequestration, especially for hills and mountain ecosystems.
国家哲学社会科学文献中心版权所有