首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:Parametric Urban-Scale Analysis of Space Cooling Energy Needs and Potential Photovoltaic Integration in Residential Districts in South-West Europe
  • 本地全文:下载
  • 作者:Andrea Zambito ; Giovanni Pernigotto ; Simon Pezzutto
  • 期刊名称:Sustainability
  • 印刷版ISSN:2071-1050
  • 出版年度:2022
  • 卷号:14
  • 期号:11
  • 页码:6521
  • DOI:10.3390/su14116521
  • 语种:English
  • 出版社:MDPI, Open Access Journal
  • 摘要:The energy needs for space cooling are becoming a significant share of the energy balance of different Member States of the European Union, in particular the Mediterranean countries. This trend has been observed and monitored by the European Union, which has started a number of initiatives to promote the reduction in the energy demand for space cooling and have it satisfied by renewable energy sources, such as photovoltaic electrical energy. Nevertheless, even if the potential of those solutions has been widely investigated at the single-building level, this scale of analysis seems not fully adequate to support the definition of the energy policies addressed towards the renovation of the current cities into smart ones, with a large share of their energy demand satisfied with renewable energy. In this framework, this research aims to investigate the topic of building energy performance for space cooling services by adopting an urban-scale approach. In detail, a parametric simulation plan was run with CitySim in order to assess the impact of different quantities, i.e., climate conditions, districts’ and buildings’ geometry features, and the thermal quality of the building envelope, on the overall cooling energy need for districts and the specific building energy performance. Furthermore, the advantages of the integration of photovoltaic systems to supply power to the cooling system were analyzed, identifying the district configurations with the highest potential. For instance, in Athens, the share of space cooling demand satisfied by PV in high-rise nZEB configurations ranges between 64% (Building Density = 0.25) and 87% (Building Density = 1), while in the low-rise nZEB configurations it ranges between 81% (Building Density = 0.25) and 75% (Building Density = 1).
国家哲学社会科学文献中心版权所有