摘要:This study proposes an optimized algorithm for the navigation of the mobile robot in the indoor and dynamic unknown environment based on the decision tree algorithm. Firstly, the error of the yaw value outputted from IMU sensor fusion module is analyzed in the indoor environment; then, the adaptive FAST SLAM is proposed to optimize the yaw value from the odometer; in the next, a decision tree algorithm is applied which predicts the correct moving direction of the mobile robot through the outputted yaw value from the IMU sensor fusion module and adaptive FAST SLAM of the odometer data in the indoor and dynamic environment; the following is the navigation algorithm proposed for the mobile robot in the dynamic and unknown environment; finally, a real mobile robot is designed to verify the proposed algorithm.The final result shows the proposed algorithms are valid and effective.