首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Framework to Segment and Evaluate Multiple Sclerosis Lesion in MRI Slices Using VGG-UNet
  • 本地全文:下载
  • 作者:Sujatha Krishnamoorthy ; Yaxi Zhang ; Seifedine Kadry
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2022
  • 卷号:2022
  • DOI:10.1155/2022/4928096
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Multiple sclerosis (MS) is an autoimmune disease that causes mild to severe issues in the central nervous system (CNS). Early detection and treatment are necessary to reduce the harshness of the disease in individuals. The proposed work aims to implement a convolutional neural network (CNN) segmentation scheme to extract the MS lesion in a 2D brain MRI slice. To achieve a better MS detection, this work implemented the VGG-UNet scheme in which the pretrained VGG19 is considered as the encoder section. This scheme is tested on 30 patient images (600 images with dimension 512 × 512 × 3 pixels), and the experimental outcome confirms that this scheme provides a better result compared to traditional UNet, SegNet, VGG-UNet, and VGG-SegNet. The experimental investigation implemented on axial, coronal and sagittal plane 2D slices of Flair modality confirms that this work provides a better value of Jaccard (>85%), Dice (>92%), and accuracy (>98%).
国家哲学社会科学文献中心版权所有