首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:A Path-Planning Approach Based on Potential and Dynamic Q-Learning for Mobile Robots in Unknown Environment
  • 本地全文:下载
  • 作者:Bing Hao ; He Du ; Jianshuo Zhao
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2022
  • 卷号:2022
  • DOI:10.1155/2022/2540546
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:The path-planning approach plays an important role in determining how long the mobile robots can travel. To solve the path-planning problem of mobile robots in an unknown environment, a potential and dynamic Q-learning (PDQL) approach is proposed, which combines Q-learning with the artificial potential field and dynamic reward function to generate a feasible path. The proposed algorithm has a significant improvement in computing time and convergence speed compared to its classical counterpart. Experiments undertaken on simulated maps confirm that the PDQL when used for the path-planning problem of mobile robots in an unknown environment outperforms the state-of-the-art algorithms with respect to two metrics: path length and turning angle. The simulation results show the effectiveness and practicality of the proposal for mobile robot path planning.
国家哲学社会科学文献中心版权所有