首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:Quantitative Analysis of Broken Rotor Bars in Cage Motor Based on Energy Characteristics of Vibration Signals
  • 本地全文:下载
  • 作者:Jie Shi ; Haifeng Shen ; Zhenkai Ding
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2022
  • 卷号:2022
  • DOI:10.1155/2022/9312876
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:The rotor, as the power output device of a cage motor, is subject to a type of invisible fault, BRB, during long-term use. The conventional motor vibration signal fault monitoring system only analyzes the rotor qualitatively for the fault of BRBs and cannot evaluate the fault degree of BRBs quantitatively. Moreover, the vibration signal used for monitoring has nonstationary and nonlinear characteristics. It is necessary to manually determine the time window and basis function when extracting the characteristics of the time-frequency domain. To address these problems, this paper proposes a method for quantitative analysis of BRBs based on CEEMD decomposition and weight transformation for feature extraction and then uses the AdaBoost to construct a classifier. The method applies CEEMD for adaptive decomposition while extracting IMFs' energy as the initial feature values, uses OOB for contribution evaluation of features to construct weight vectors, and performs a spatial transformation on the original feature values to expand the differences between the feature vectors. To verify the effectiveness and superiority of the method, vibration signals were collected from motors in four BRB states to produce rotor fault data sets in this paper. The experiment results show that the feature extraction method based on CEEMD decomposition and weight transformation can better extract the feature vectors from the vibration signals, and the constructed classifier can accurately perform quantitative analysis of BRB fault.
国家哲学社会科学文献中心版权所有