首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:REGULAR MATCHING PROBLEMS FOR INFINITE TREES
  • 本地全文:下载
  • 作者:Carlos Camino ; Volker Diekert ; Besik Dundua
  • 期刊名称:Logical Methods in Computer Science
  • 印刷版ISSN:1860-5974
  • 电子版ISSN:1860-5974
  • 出版年度:2022
  • 卷号:18
  • 期号:1
  • 页码:1-38
  • DOI:10.46298/lmcs-18(1:25)2022
  • 语种:English
  • 出版社:Technical University of Braunschweig
  • 摘要:We study the matching problem of regular tree languages, that is, "$\exists \sigma:\sigma(L)\subseteq R$?" where $L,R$ are regular tree languages over the union of finite ranked alphabets $\Sigma$ and $\mathcal{X}$ where $\mathcal{X}$ is an alphabet of variables and $\sigma$ is a substitution such that $\sigma(x)$ is a set of trees in $T(\Sigma\cup H)\setminus H$ for all $x\in \mathcal{X}$. Here, $H$ denotes a set of "holes" which are used to define a "sorted" concatenation of trees. Conway studied this problem in the special case for languages of finite words in his classical textbook "Regular algebra and finite machines" published in 1971. He showed that if $L$ and $R$ are regular, then the problem "$\exists \sigma \forall x\in \mathcal{X}: \sigma(x)\neq \emptyset\wedge \sigma(L)\subseteq R$?" is decidable. Moreover, there are only finitely many maximal solutions, the maximal solutions are regular substitutions, and they are effectively computable. We extend Conway's results when $L,R$ are regular languages of finite and infinite trees, and language substitution is applied inside-out, in the sense of Engelfriet and Schmidt (1977/78). More precisely, we show that if $L\subseteq T(\Sigma\cup\mathcal{X})$ and $R\subseteq T(\Sigma)$ are regular tree languages over finite or infinite trees, then the problem "$\exists \sigma \forall x\in \mathcal{X}: \sigma(x)\neq \emptyset\wedge \sigma_{\mathrm{io}}(L)\subseteq R$?" is decidable. Here, the subscript "$\mathrm{io}$" in $\sigma_{\mathrm{io}}(L)$ refers to "inside-out". Moreover, there are only finitely many maximal solutions $\sigma$, the maximal solutions are regular substitutions and effectively computable. The corresponding question for the outside-in extension $\sigma_{\mathrm{oi}}$ remains open, even in the restricted setting of finite trees.
  • 关键词:Regular tree languages;infinite trees;Factorization theory;IO and OI
国家哲学社会科学文献中心版权所有