首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Sustainable Industry 4.0 Wireless Networks, Machine Learning Algorithms, and Internet of Things-based Real-Time Production Logistics in Digital Twin-driven Smart Manufacturing
  • 本地全文:下载
  • 作者:Elvira Nica ; Gheorghe H.Popescu ; George Lăzăroiu
  • 期刊名称:SHS Web of Conferences
  • 印刷版ISSN:2416-5182
  • 电子版ISSN:2261-2424
  • 出版年度:2021
  • 卷号:129
  • 页码:1-9
  • DOI:10.1051/shsconf/202112904003
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:Research The aim of this paper is to synthesize and analyze existing evidence on artificial intelligence-based decision-making algorithms, industrial big data, and Internet of Things sensing networks in digital twin-driven smart manufacturing.Purpose of the article: Using and replicating data from Altair, Catapult, Deloitte, DHL, GAVS, PwC, and ZDNet we performed analyses and made estimates regarding cyber-physical system-based real-time monitoring, product decision-making information systems, and artificial intelligence data-driven Internet of Things systems in digital twin-based cyber-physical production systems.
  • 关键词:digital twin;smart manufacturing;industrial big data;Internet of Things;smart manufacturing
国家哲学社会科学文献中心版权所有