首页    期刊浏览 2025年05月22日 星期四
登录注册

文章基本信息

  • 标题:Estimating the seven transformational parameters between two geodetic datums using the steepest descent algorithm of machine learning
  • 本地全文:下载
  • 作者:Ikechukwu Kalu ; Christopher E. Ndehedehe ; Onuwa Okwuashi
  • 期刊名称:Applied Computing and Geosciences
  • 印刷版ISSN:2590-1974
  • 出版年度:2022
  • 卷号:14
  • 页码:100086
  • 语种:English
  • 出版社:Elsevier
  • 摘要:This study evaluates the steepest descent algorithm as a tool for root mean square (RMS) error optimization in geodetic reference systems to improve the integrity of transformation. With an initial RMS error estimate of 0.01830m, the negative gradient direction was applied through the steepest optimization leading to a final RMS error estimate of 0.00051m. Using the exact line search mode with a one-point step size of 0.1, we achieved the minimum values in less than sixty iterations, regardless of the slow convergence rate of the steepest descent algorithm.
国家哲学社会科学文献中心版权所有