首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:MDST-DGCN: A Multilevel Dynamic Spatiotemporal Directed Graph Convolutional Network for Pedestrian Trajectory Prediction
  • 本地全文:下载
  • 作者:Shaohua Liu ; Haibo Liu ; Yisu Wang
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2022
  • 卷号:2022
  • DOI:10.1155/2022/4192367
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Pedestrian trajectory prediction is an essential but challenging task. Social interactions between pedestrians have an immense impact on trajectories. A better way to model social interactions generally achieves a more accurate trajectory prediction. To comprehensively model the interactions between pedestrians, we propose a multilevel dynamic spatiotemporal digraph convolutional network (MDST-DGCN). It consists of three parts: a motion encoder to capture the pedestrians’ specific motion features, a multilevel dynamic spatiotemporal directed graph encoder (MDST-DGEN) to capture the social interaction features of multiple levels and adaptively fuse them, and a motion decoder to produce the future trajectories. Experimental results on public datasets demonstrate that our model achieves state-of-the-art results in both long-term and short-term predictions for both high-density and low-density crowds.
国家哲学社会科学文献中心版权所有