首页    期刊浏览 2025年06月29日 星期日
登录注册

文章基本信息

  • 标题:A Mixture of Clayton, Gumbel, and Frank Copulas: A Complete Dependence Model
  • 本地全文:下载
  • 作者:M. A. Boateng ; A. Y. Omari-Sasu ; R. K. Avuglah
  • 期刊名称:Journal of Probability and Statistics
  • 印刷版ISSN:1687-952X
  • 电子版ISSN:1687-9538
  • 出版年度:2022
  • 卷号:2022
  • DOI:10.1155/2022/1422394
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Knowledge of the dependence between random variables is necessary in the area of risk assessment and evaluation. Some of the existing Archimedean copulas, namely the Clayton and the Gumbel copulas, allow for higher correlations on the extreme left and right, respectively. In this study, we use the idea of convex combinations to build a hybrid Clayton–Gumbel–Frank copula that provides all dependence scenarios from existing Archimedean copulas. The corresponding density and conditional distribution functions of the derived models for two random variables, as well as an estimator for the proportion parameter associated with the proposed model, are also derived. The results show that the proposed model is able to show any case of dependence by providing coefficients for the upper tail and lower tail dependence.
国家哲学社会科学文献中心版权所有