首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Detection of Dental Diseases through X-Ray Images Using Neural Search Architecture Network
  • 本地全文:下载
  • 作者:Abdullah S. AL-Malaise AL-Ghamdi ; Mahmoud Ragab ; Saad Abdulla AlGhamdi
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2022
  • 卷号:2022
  • DOI:10.1155/2022/3500552
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:An important aspect of the diagnosis procedure in daily clinical practice is the analysis of dental radiographs. This is because the dentist must interpret different types of problems related to teeth, including the tooth numbers and related diseases during the diagnostic process. For panoramic radiographs, this paper proposes a convolutional neural network (CNN) that can do multitask classification by classifying the X-ray images into three classes: cavity, filling, and implant. In this paper, convolutional neural networks are taken in the form of a NASNet model consisting of different numbers of max-pooling layers, dropout layers, and activation functions. Initially, the data will be augmented and preprocessed, and then, the construction of a multioutput model will be done. Finally, the model will compile and train the model; the evaluation parameters used for the analysis of the model are loss and the accuracy curves. The model has achieved an accuracy of greater than 96% such that it has outperformed other existing algorithms.
国家哲学社会科学文献中心版权所有