首页    期刊浏览 2025年08月27日 星期三
登录注册

文章基本信息

  • 标题:Convolutional Neural Network-Based Cross-Media Semantic Matching and User Adaptive Satisfaction Analysis Model
  • 本地全文:下载
  • 作者:Lanlan Jiang
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2022
  • 卷号:2022
  • DOI:10.1155/2022/4244675
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In this paper, an in-depth study of cross-media semantic matching and user adaptive satisfaction analysis model is carried out based on the convolutional neural network. Based on the existing convolutional neural network, this paper uses rich information. The spatial correlation of cross-media semantic matching further improves the classification accuracy of hyperspectral images and reduces the classification time under user adaptive satisfaction complexity. Aiming at the problem that it is difficult for the current hyperspectral image classification method based on convolutional neural network to capture the spatial pose characteristics of objects, the problem is that principal component analysis ignores some vital information when retaining a few components. This paper proposes a polymorphism based on extension Attribute Profile Feature (EMAP) Stereo Capsule Network Model for Hyperspectral Image Classification. To ensure the model has good generalization performance, a new remote sensing image Pan sharpening algorithm based on convolutional neural network is proposed, which increases the model’s width to extract the feature information of the image and uses dilated instead of traditional convolution. The experimental results show that the algorithm has good generalization while ensuring self-adaptive satisfaction.
国家哲学社会科学文献中心版权所有