首页    期刊浏览 2025年02月22日 星期六
登录注册

文章基本信息

  • 标题:Deep Reinforcement Learning for Stock Prediction
  • 本地全文:下载
  • 作者:Junhao Zhang ; Yifei Lei
  • 期刊名称:Scientific Programming
  • 印刷版ISSN:1058-9244
  • 出版年度:2022
  • 卷号:2022
  • DOI:10.1155/2022/5812546
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Investors are frequently concerned with the potential return from changes in a company’s stock price. However, stock price fluctuations are frequently highly nonlinear and nonstationary, rendering them to be uncontrollable and the primary reason why the majority of investors earn low long-term returns. Historically, people have always simulated and predicted using classic econometric models and simple machine learning models. In recent years, an increasing amount of research has been conducted using more complex machine learning and deep learning methods to forecast stock prices, and their research reports also indicate that their prediction accuracy is gradually improving. While the prediction results and accuracy of these models improve over time, their adaptability in a volatile market environment is questioned. Highly optimized machine learning algorithms include the following: FNN and the RNN are incapable of predicting the stock price of random walks and their results are frequently not consistent with stock price movements. The purpose of this article is to increase the accuracy and speed of stock price volatility prediction by incorporating the PG method’s deep reinforcement learning model. Finally, our tests demonstrate that the new algorithm’s prediction accuracy and reward convergence speed are significantly higher than those of the traditional DRL algorithm. As a result, the new algorithm is more adaptable to fluctuating market conditions.
国家哲学社会科学文献中心版权所有