首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:A Feature Extraction Algorithm of Brain Network of Motor Imagination Based on a Directed Transfer Function
  • 本地全文:下载
  • 作者:Shuang Ma ; Chaoyi Dong ; Tingting Jia
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2022
  • 卷号:2022
  • DOI:10.1155/2022/4496992
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Aiming at the feature extraction of left- and right-hand movement imagination EEG signals, this paper proposes a multichannel correlation analysis method and employs the Directed Transfer Function (DTF) to identify the connectivity between different channels of EEG signals, construct a brain network, and extract the characteristics of the network information flow. Since the network information flow identified by DTF can also reflect indirect connectivity of the EEG signal networks, the newly extracted DTF features are incorporated into the traditional AR model parameter features and extend the scope of feature sets. Classifications are carried out through the Support Vector Machine (SVM). The classification results show the enlarged feature set can significantly improve the classification accuracy of the left- and right-hand motor imagery EEG signals compared to the traditional AR feature set. Finally, the EEG signals of 2 channels, 10 channels, and 32 channels were selected for comparing their different effects of classifications. The classification results showed that the multichannel analysis method was more effective. Compared with the parameter features of the traditional AR model, the network information flow features extracted by the DTF method also achieve a higher classification effect, which verifies the effectiveness of the multichannel correlation analysis method.
国家哲学社会科学文献中心版权所有