首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Data Collection Strategy Based on OSELM and Gray Wolf Optimization Algorithm for Wireless Sensor Networks
  • 本地全文:下载
  • 作者:Yang Bai ; Li Cao ; Shuxin Wang
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2022
  • 卷号:2022
  • DOI:10.1155/2022/4489436
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In order to effectively reduce the energy consumption, improve the efficiency of data collection in HWSNs, and prolong the lifetime of the overall network, the clustering method is one of the most effective methods in the data collection methods for HWSNs. The data collection strategy of HWSNs based on the clustering method mainly includes three stages: (1) selecting the appropriate cluster head, (2) forming between clusters, and (3) transferring data between clusters. Among them, the selection of the cluster heads in the first stage. The optimal number of cluster heads in the formation of clusters in the second stage is the core and key to the clustering data collection of HWSNs. In the stage of cluster head selection, a data collection strategy for HWSNs based on the clustering method is proposed. Sink establishes an extreme learning machine neural network model. The cluster member nodes select cluster heads based on the remaining energy of the sensor node, the number of the neighbor node, and the distance to the sink. The best cluster head node is selected through the adaptive learning of the online sequence extreme learning machine. Through comprehensive consideration of various factors to complete the clustering process, the gray wolf algorithm is used to optimize the number of clusters, balance the effect of clustering, and improve the efficiency of data collection while reducing energy consumption. An energy efficient and reliable clustering data collection strategy for HWSNs based on the online sequence extreme learning machine and the gray wolf optimization algorithm is proposed in this paper. The simulation results show that the proposed algorithm not only significantly improves the efficiency of the data collection and reduces energy consumption but also comprehensively improves the reliability of the network and prolongs the network’s lifetime.
国家哲学社会科学文献中心版权所有