首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:BID-Net: An Automated System for Bone Invasion Detection Occurring at Stage T4 in Oral Squamous Carcinoma Using Deep Learning
  • 本地全文:下载
  • 作者:Pinky Agarwal ; Anju Yadav ; Pratistha Mathur
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2022
  • 卷号:2022
  • DOI:10.1155/2022/4357088
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Detection of the presence and absence of bone invasion by the tumor in oral squamous cell carcinoma (OSCC) patients is very significant for their treatment planning and surgical resection. For bone invasion detection, CT scan imaging is the preferred choice of radiologists because of its high sensitivity and specificity. In the present work, deep learning algorithm based model, BID-Net, has been proposed for the automation of bone invasion detection. BID-Net performs the binary classification of CT scan images as the images with bone invasion and images without bone invasion. The proposed BID-Net model has achieved an outstanding accuracy of 93.62%. The model is also compared with six Transfer Learning models like VGG16, VGG19, ResNet-50, MobileNetV2, DenseNet-121, ResNet-101 and BID-Net outperformed over the other models. As there exists no previous studies on bone invasion detection using Deep Learning models, so the results of the proposed model have been validated from the experts of practitioner radiologists, S.M.S. hospital, Jaipur, India.
国家哲学社会科学文献中心版权所有