摘要:Due to the marked increase in the prevalence of overweight and obesity worldwide and an environment leading to a series of chronic diseases, physical exercise is an important way to prevent chronic diseases. Additionally, a good exercise smart bracelet can bring convenience to physical exercise. Quick and accurate evaluation of smart sports bracelets has become a hot topic and draws attention from both academic researchers and public society. In the literature, the analytic hierarchy process (AHP) and entropy weight method (EWM) were used to obtain the weights from both subjective and objective perspectives, which were integrated by the comprehensive weighting method, and furthermore the performance of sports smart bracelet was evaluated through fuzzy comprehensive evaluation. Also, to avoid complex weight calculations caused by the comprehensive weighting method, machine learning methods are used to model the structure and contribute to the comprehensive evaluation process. However, few studies have investigated all previous elements in the comprehensive evaluation process. In this study, we consider all previous parts when evaluating smart sports bracelets. In particular, we use the sparrow search algorithm (SSA) to optimize the backpropagation (BP) neural network for constructing the comprehensive score prediction model of the sports smart bracelet. Results show that the sparrow search algorithm-optimized backpropagation (SSA-BP) neural network model has good predictive ability and can quickly obtain evaluation results on the premise of effectively ensuring the accuracy of the evaluation results.