首页    期刊浏览 2025年02月17日 星期一
登录注册

文章基本信息

  • 标题:High Precision Calibration Algorithm for Binocular Stereo Vision Camera using Deep Reinforcement Learning
  • 本地全文:下载
  • 作者:Jie Ren ; Fuyu Guan ; Tingting Wang
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2022
  • 卷号:2022
  • DOI:10.1155/2022/6596868
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Camera calibration is the most important aspect of computer vision research. To address the issue of insufficient precision, therefore, a high precision calibration algorithm for binocular stereo vision camera using deep reinforcement learning is proposed. Firstly, a binocular stereo camera model is established. Camera calibration is mainly divided into internal and external parameter calibration. Secondly, the internal parameter calibration is completed by solving the antihidden point of the camera light center and the camera distortion value of the camera plane. The deep learning fitting value function is used based on the internal parameters. The target network is established to adjust the parameters of the value function, and the convergence of the value function is calculated to optimize reinforcement learning. The deep reinforcement learning fitting structure is built, the camera data is entered, and the external parameter calibration is finished by continuous updating and convergence. Finally, the high precision calibration of the binocular stereo vision camera is completed. The results show that the calibration error of the proposed algorithm under different sizes of checkerboard calibration board test is only 0.36% and 0.35%, respectively, the calibration accuracy is high, the value function converges quickly, and the parameter calculation accuracy is high, the overall time consumption of the proposed algorithm is short, and the calibration results have strong stability.
国家哲学社会科学文献中心版权所有