首页    期刊浏览 2024年11月14日 星期四
登录注册

文章基本信息

  • 标题:Application of the LINEX Loss Function with a Fundamental Derivation of Liu Estimator
  • 本地全文:下载
  • 作者:M.A. Mohammed ; Huda M. Alshanbari ; Abdal-Aziz H. El-Bagoury
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2022
  • 卷号:2022
  • DOI:10.1155/2022/2307911
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:For a variety of well-known approaches, optimum predictors and estimators are determined in relation to the asymmetrical LINEX loss function. The applications of an iteratively practicable lowest mean squared error estimation of the regression disturbance variation with the LINEX loss function are discussed in this research. This loss is a symmetrical generalisation of the quadratic loss function. Whenever the LINEX loss function is applied, we additionally look at the risk performance of the feasible virtually unbiased generalised Liu estimator and practicable generalised Liu estimator. Whenever the variation σ2 is specified, we get all acceptable linear estimation in the class of linear estimation techniques, and when σ2 is undetermined, we get all acceptable linear estimation in the class of linear estimation techniques. During position transformations, the proposed Liu estimators are stable. The estimators’ biases and hazards are calculated and evaluated. We utilize an asymmetrical loss function, the LINEX loss function, to calculate the actual hazards of several error variation estimators. The employment of δPσ, which is easy to use and maximin, is recommended in the conclusions.
国家哲学社会科学文献中心版权所有