首页    期刊浏览 2025年07月04日 星期五
登录注册

文章基本信息

  • 标题:Neural vs. Phrase-Based Machine Translation in a Multi-Domain Scenario
  • 本地全文:下载
  • 作者:M. Amin Farajian ; Marco Turchi ; Matteo Negri
  • 期刊名称:Conference on European Chapter of the Association for Computational Linguistics (EACL)
  • 出版年度:2017
  • 卷号:2017
  • 页码:280-284
  • 语种:English
  • 出版社:ACL Anthology
  • 摘要:State-of-the-art neural machine translation (NMT) systems are generally trained on specific domains by carefully selecting the training sets and applying proper domain adaptation techniques. In this paper we consider the real world scenario in which the target domain is not predefined, hence the system should be able to translate text from multiple domains. We compare the performance of a generic NMT system and phrase-based statistical machine translation (PBMT) system by training them on a generic parallel corpus composed of data from different domains. Our results on multi-domain English-French data show that, in these realistic conditions, PBMT outperforms its neural counterpart. This raises the question: is NMT ready for deployment as a generic/multi-purpose MT backbone in real-world settings?
国家哲学社会科学文献中心版权所有