首页    期刊浏览 2025年02月23日 星期日
登录注册

文章基本信息

  • 标题:Out-of-domainFrameNet Semantic Role Labeling
  • 本地全文:下载
  • 作者:Silvana Hartmann ; Ilia Kuznetsov ; Teresa Martin
  • 期刊名称:Conference on European Chapter of the Association for Computational Linguistics (EACL)
  • 出版年度:2017
  • 卷号:2017
  • 页码:471-482
  • 语种:English
  • 出版社:ACL Anthology
  • 摘要:Domain dependence of NLP systems is one of the major obstacles to their application in large-scale text analysis, also restricting the applicability of FrameNet semantic role labeling (SRL) systems. Yet, current FrameNet SRL systems are still only evaluated on a single in-domain test set. For the first time, we study the domain dependence of FrameNet SRL on a wide range of benchmark sets. We create a novel test set for FrameNet SRL based on user-generated web text and find that the major bottleneck for out-of-domain FrameNet SRL is the frame identification step. To address this problem, we develop a simple, yet efficient system based on distributed word representations. Our system closely approaches the state-of-the-art in-domain while outperforming the best available frame identification system out-of-domain. We publish our system and test data for research purposes.
国家哲学社会科学文献中心版权所有