首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Context-Aware Prediction of Derivational Word-forms
  • 本地全文:下载
  • 作者:Ekaterina Vylomova ; Ryan Cotterell ; Timothy Baldwin
  • 期刊名称:Conference on European Chapter of the Association for Computational Linguistics (EACL)
  • 出版年度:2017
  • 卷号:2017
  • 页码:118-124
  • 语种:English
  • 出版社:ACL Anthology
  • 摘要:Derivational morphology is a fundamental and complex characteristic of language. In this paper we propose a new task of predicting the derivational form of a given base-form lemma that is appropriate for a given context. We present an encoder-decoder style neural network to produce a derived form character-by-character, based on its corresponding character-level representation of the base form and the context. We demonstrate that our model is able to generate valid context-sensitive derivations from known base forms, but is less accurate under lexicon agnostic setting.
国家哲学社会科学文献中心版权所有