首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Applying Multi-Sense Embeddings forGerman Verbs to Determine Semantic Relatedness and to Detect Non-Literal Language
  • 本地全文:下载
  • 作者:Maximilian Köper ; Sabine Schulte im Walde
  • 期刊名称:Conference on European Chapter of the Association for Computational Linguistics (EACL)
  • 出版年度:2017
  • 卷号:2017
  • 页码:535-542
  • 语种:English
  • 出版社:ACL Anthology
  • 摘要:Up to date, the majority of computational models still determines the semantic relatedness between words (or larger linguistic units) on the type level. In this paper, we compare and extend multi-sense embeddings, in order to model and utilise word senses on the token level. We focus on the challenging class of complex verbs, and evaluate the model variants on various semantic tasks: semantic classification; predicting compositionality; and detecting non-literal language usage. While there is no overall best model, all models significantly outperform a word2vec single-sense skip baseline, thus demonstrating the need to distinguish between word senses in a distributional semantic model.
国家哲学社会科学文献中心版权所有