首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:Multimodal Topic Labelling
  • 本地全文:下载
  • 作者:Ionut Sorodoc ; Jey Han Lau ; Nikolaos Aletras
  • 期刊名称:Conference on European Chapter of the Association for Computational Linguistics (EACL)
  • 出版年度:2017
  • 卷号:2017
  • 页码:701-706
  • 语种:Italian
  • 出版社:ACL Anthology
  • 摘要:Topics generated by topic models are typically presented as a list of topic terms. Automatic topic labelling is the task of generating a succinct label that summarises the theme or subject of a topic, with the intention of reducing the cognitive load of end-users when interpreting these topics. Traditionally, topic label systems focus on a single label modality, e.g. textual labels. In this work we propose a multimodal approach to topic labelling using a simple feedforward neural network. Given a topic and a candidate image or textual label, our method automatically generates a rating for the label, relative to the topic. Experiments show that this multimodal approach outperforms single-modality topic labelling systems.
国家哲学社会科学文献中心版权所有