首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:CreatingPOSTagging and Dependency Parsing Experts via Topic Modeling
  • 本地全文:下载
  • 作者:Atreyee Mukherjee ; Sandra Kübler ; Matthias Scheutz
  • 期刊名称:Conference on European Chapter of the Association for Computational Linguistics (EACL)
  • 出版年度:2017
  • 卷号:2017
  • 页码:347-355
  • 语种:English
  • 出版社:ACL Anthology
  • 摘要:Part of speech (POS) taggers and dependency parsers tend to work well on homogeneous datasets but their performance suffers on datasets containing data from different genres. In our current work, we investigate how to create POS tagging and dependency parsing experts for heterogeneous data by employing topic modeling. We create topic models (using Latent Dirichlet Allocation) to determine genres from a heterogeneous dataset and then train an expert for each of the genres. Our results show that the topic modeling experts reach substantial improvements when compared to the general versions. For dependency parsing, the improvement reaches 2 percent points over the full training baseline when we use two topics.
国家哲学社会科学文献中心版权所有