期刊名称:Conference on European Chapter of the Association for Computational Linguistics (EACL)
出版年度:2017
卷号:2017
页码:623-632
语种:English
出版社:ACL Anthology
摘要:Automatically generating product reviews is a meaningful, yet not well-studied task in sentiment analysis. Traditional natural language generation methods rely extensively on hand-crafted rules and predefined templates. This paper presents an attention-enhanced attribute-to-sequence model to generate product reviews for given attribute information, such as user, product, and rating. The attribute encoder learns to represent input attributes as vectors. Then, the sequence decoder generates reviews by conditioning its output on these vectors. We also introduce an attention mechanism to jointly generate reviews and align words with input attributes. The proposed model is trained end-to-end to maximize the likelihood of target product reviews given the attributes. We build a publicly available dataset for the review generation task by leveraging the Amazon book reviews and their metadata. Experiments on the dataset show that our approach outperforms baseline methods and the attention mechanism significantly improves the performance of our model.